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Abstract. We study rotobreather properties in Josephson ladders with external dc currents and
nonzero island–island capacitances. These solutions are localized in space, with tails characterized
by exponential localization and a wave length which both vary smoothly upon varying the external
bias. We demonstrate the existence of resonances for underdamped systems which are related to
the plane wave spectrum of the nonresistive system. We propose experimental observations of
these resonances.

1. Introduction

It is a well established fact that classical Hamiltonian lattices which generate nonlinear
equations of motion for the participating degrees of freedom generically allow for time-periodic
spatially localized solutions, coined discrete breathers ([A], [FW] and references therein).
Remarkably these excitations exist in the absence of any disorder. The main reason for their
existence and structural stability is the boundness of the associated eigenvalue problem for
small amplitudes where the equations of motion can be linearized around some homogeneous
and translationally invariant minimum of the total energy. Originally these discrete breathers
corresponded to localized oscillations on such a lattice. Considerations of Hamiltonian
systems with periodicity in the ‘displacements’ (e.g. coupled pendula) lead to the observation
that rotobreather solutions also exist, i.e. solutions where certain pendula perform rotational
motion, while pendula far away from the breather centre librate with amplitudes decaying
with increasing distance [TP1], [TP2], [MA]. Extensions of these concepts to more general
evolution equations of coupled degrees of freedom showed that localization takes place also
in nonHamiltonian systems [MS]. Consequently it became of considerable interest to consider
certain geometries of small coupled Josephson junctions, as these systems under proper
circumstances can be described using classical equations of motion for the superconducting
phase differences of the junctions. A recently proposed ladder geometry [FM] could serve
as an ideal candidate to perform experimental studies in order to observe rotobreather states.
Indeed, Josephson junction systems have been extensively used in the past as a playground
for various nonlinear excitations on the one hand (e.g. [UCM]), while this knowledge has
been applied to the studies of properties of cuprates and related materials on the other hand
[KM], [HKUM].
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Rotobreather solutions in models of Josephson junction ladders have been considered in
[FM]. There, the external current was assumed to be purely of ac type. The breather solutions
phase lock, in these cases, to the external time-periodic driving. One consequence of this is that
the amplitudes of oscillation will not decay to zero far from the breather centre. On the other
hand, the frequencies of the assumed ac current should be of the order of the characteristic
plasma frequencies (in order to ensure the validity of the used equations). This is not easy to
realize experimentally. Indeed, experiments are usually carried out using dc currents. In that
case, however, trivial phase locking no longer takes place. The frequencies of excited states
will be some functions of the strength of the dc current. Although this seems to complicate
the story, it does provide a nice possibility to continuously tune excited state properties by
varying the dc current strength. Another reason to consider rotobreathers here is the fact that
in experimental realizations the capacitive interaction between two superconducting islands is
usually much stronger than the capacitive interaction between a given island and the substrate.
In terms of the system energy [WS]

H = 1

2

∑
CijViVj − 1

2
Eij cos(θi − θj )

(hereVi is the voltage on theith island), this implies that offdiagonal terms of the capacitance
matrixCij will be large compared to the diagonal ones. The equations considered in [WS]
assume diagonal capacitance matrices. A comparison to experiments should take offdiagonal
terms into account.

Recently MacKay and Sepulchre [MS] proved the existence of rotobreather solutions in
a simplified model with dc currents. This result can be grasped in the following way: a single
Josephson junction shows coexistence of a stable limit cycle (rotating state, nonzero voltage
drop) and a stable fixed point (time-independent phase difference, no voltage drop) for external
currents below the critical value, provided the junction is underdamped. A set of uncoupled
junctions can then be prepared in such a way that one junction is in the limit cycle while all
others are in the fixed point (with same external currents applied at each junction). Switching
on some weak coupling between the junctions (in practice the couplings will be junctions
again) keeps the localization property of the state provided the coupling is short ranged.

The aim of this paper is to consider the equations of the Josephson ladder and to study
rotobreather properties and their dependence on the external dc current. The paper is organized
in the following way. In section 2 we consider the model and the plane wave spectrum (when
neglecting resistive terms). In section 3 we show how to generate rotobreathers experimentally,
and discuss numerically obtained solutions. Section 4 is devoted to the tail analysis of
rotobreathers, and the effects of varying the external current strength. We conclude with
consequences for experiments.

2. The model

We consider a 2D array of small Josephson junctions arranged in a ladder geometry
(see figure 1), i.e. two rows of junctions in series connected by a parallel array of other
junctions, withNj = 2N + 1 loops (or cells). The inductive effects due to the weak links and
the finite size of the electrodes, are also explicitly taken into account by means of inductances
in series with each junction. HereafterϕHn (respectivelyϕ̃Hn ) will denote the gauge-invariant
phase-difference (PD) between the order parameters of the right and left superconducting
electrodes at the interface of thenth lower (respectively upper) horizontal junction, andϕVn the
corresponding PD between the upper and lower superconductors of the vertical junction lying
on the left side of the same cell. In addition, we assume that the array is fed by independent
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Figure 1. The equivalent electrical network of the model. The ‘×’ represent Josephson junctions.

current generators which inject currents at each node of the lower row, and extract them at the
corresponding one of the upper row.

The equations of motion governing the time evolution of the PD in this model are derived
in [GF], where the following assumptions are made: (1) the mutual inductance between any
pair of cells is negligible with respect to the self-inductance of each of them; (2) all cells are
identical; (3) the dependence of the junction critical currents on the magnetic flux through the
junction interface is negligible; (4) the current flowing in each junction is described by the
resistive-shunted-junction (RSJ) model [BP], [T]. Unlike [GF], in our approach the vertical
and horizontal junctions may have in general different values of the capacitance, resistance and
critical current (anisotropic ladder), provided these parameters satisfy the following relations

r
.= CV

IVc
= CH

IHc
(1)

p
.= IVc RV = IHc RH . (2)

Notice also that the assumption made in [GF], that the currents injected (and extracted)
are all equal, can be replaced by the more general condition that the current injected in a
node of the lower row and that extracted from the corresponding one in the upper row are
equal. Therefore, we may use the indexed quantityI exn to denote the current flowing through
the generator connected to thenth pair of nodes of the ladder. In addition, by virtue of this
symmetry between upper and lower nodes, the PD of the two horizontal junctions of a cell
obey the same equation, up to the sign of the current flowing through them. This implies that
if we choose initial conditions which have the above symmetry, the time evolution ofϕ̃Hn and
ϕHn will be the same (up to a sign), so that we may writeϕ̃Hn ≡ −ϕHn . Since we will always
assume that this is the case, we may limit our consideration to the dynamics ofϕVn andϕHn ,
whose equations of motion read [GF]

ϕ̈Vn + αϕ̇Vn + sinϕVn = γn + βL(2(ϕ
H
n − ϕHn−1) + ϕVn+1 + ϕVn−1− 2ϕVn ) (3)

ϕ̈Hn + αϕ̇Hn + sinϕHn =
βL

η
(ϕVn − ϕVn+1− 2ϕHn ) (4)
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where

• time is measured in units ofτ
.= √(8◦/2π)r (8◦ = h/e is the flux quantum);

• the dissipation coefficient isα = 1/
√
βC , whereβC

.= 2πrp2/8◦ [McC];
• γn .= I exn /IVc ;
• βL .= 8◦/(2πLIVc ), whereL is the self-inductance of a cell [McC];
• η .= IHc /IVc is the anisotropy parameter;
• n = 0,±1,±2, . . . ,±N .

In the following we will assume periodic boundary conditions

ϕVn+Nj ≡ ϕVn (5)

ϕHn+Nj ≡ ϕHn . (6)

The plane wave dispersion relation associated to this model in the absence of dissipation
(α = 0), is calculated by linearizing equations (3) and (4), introducingϕ̂Vn

.= ϕVn − γn and
assuming the following ansatz for the solutions

ϕ̂Vn ∝
∑
q

ξq ei(qn−ω(q)t) (7)

ϕHn ∝
∑
q

θq ei(qn−ω(q)t) (8)

whereq is the wave vector. By inserting these relations into equations (3) and (4), and
requiring that the determinant of the resulting set of algebraic equations vanishes, in order
to have nontrivial solutions for the Fourier amplitudesξq andθq , we finally obtain a linear
dispersion relation consisting of two branches, namely

ω(1)p = 1 (9)

ω(2)p (q) =
√

1 +
2βL
η

+ 4βL sin2 q

2
. (10)

Notice that the lower branch,ω(1)p , is dispersionless†. The Fourier amplitude patterns
corresponding toω(1)p andω(2)p verify

ξq 6= 0 θq = 0 q = 0
ξq

θq
= 2

1− ei q
q 6= 0

and, respectively,

ξq = 0 θq 6= 0 q = 0
ξq

θq
= −η(1− e−i q) q 6= 0.

3. Excitation of rotobreathers

The procedure through which a rotobreather can be excited in an underdamped Josephson
junction ladder, consists of three steps.

† This symmetry is a result of Kirchhoff’s laws together with the chosen geometry of the system. Other geometries
might lift this symmetry, leading to a nonzero dispersion in the lower branch. Since this dispersion will still be bounded
due to the spatial discreteness of the system, the existence and properties of rotobreathers will be not qualitatively
changed [FW].
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(1) Initially, just one current generator is turned on, e.g., the one connected to the 0th pair
of nodes, and we let it inject a currentγ0 = γ (1) > 1. Therefore, as the stationary state has
been reached, a localized excitation of the PD is established along the ladder, withϕV0 rotating
(ϕH−1 andϕH0 do the same, see below) and all the others performing forced oscillations around
the minimum of the potential with the same frequency.

(2) After reaching the stationary state in the first phase, the current is decreased to a new
valueγ (2) < 1, such that a localized excitation may be still sustained by the array.

(3) Finally, after relaxing the system into the steady state, all the remaining current
generators are switched on, giving rise to a uniform pattern of bias currentsγn = γ (2) < 1,
n = 0,±1,±2, . . . ,±N .

We will now show some numerical results which illustrate the above procedure. Starting
from the initial conditionsϕVn (0) = ϕHn (0) = 0 and ˙ϕVn (0) = ϕ̇Hn (0) = 0 for n =
0,±1,±2, . . . ,±N , we have numerically integrated the equations of motion of a ladder with
Nj = 11 cells, by using a fifth-order Cash–Karp Runge–Kutta algorithm, combined with an
embedded fourth-order method for the estimate of the truncation error. We have considered
the following values for the parameters:α = 0.1,βL = 1.0 andη = 1.0. In addition, the first
two phases described above have been chosen of lengthsT (1) = T (2) = 500 (natural units)
with γ (1) = 2 andγ (2) = 0.7.

The pairs of figures, 2 and 3, 4 and 5, and 6 and 7 below, show the time evolution of the
PD velocities of some vertical and horizontal junctions on the left of the 0th pair of nodes,
respectively at the end of the first phase, at the end of the second phase and, after a long time,
during the third phase. Notice that the system, except for the horizontal junctions in theN th
cell, is symmetric around the 0th vertical junction, so that the same results are obtained on
the rhs of the latter (up to the sign of ˙ϕHn , n = 0, 1, 2, . . . , N − 1). In all these plots one can
recognize the rotating motions ofϕV0 andϕH−1 by the nonzero average of the corresponding
velocities. By comparing such averages one concludes that the following relations hold

〈ϕ̇H−1〉 = −〈 ˙̃ϕ
H

−1〉 = −
〈ϕ̇V0 〉

2
(11)

and similarly

〈ϕ̇H0 〉 = −〈 ˙̃ϕ
H

0 〉 =
〈ϕ̇V0 〉

2
. (12)

These can be explained by recalling that the time average of the PD velocity is proportional to
the voltage drop across the junction barrier and that the sum of the voltages around a cell must
vanish. By using equations (11) and (12) one may also obtain a general approximate relation
between〈ϕ̇V0 〉, γ0, α andη. Let us consider the equations of motion of the central vertical and
horizontal junctions

ϕ̈V0 + αϕ̇V0 + sinϕV0 = γ0 + βL(2(ϕ
H
0 − ϕH−1) + ϕV1 + ϕV−1− 2ϕV0 ) (13)

ϕ̈H0 + αϕ̇H0 + sinϕH0 =
βL

η
(ϕV0 − ϕV1 − 2ϕH0 ) (14)

ϕ̈H−1 + αϕ̇H−1 + sinϕH−1 =
βL

η
(ϕV−1− ϕV0 − 2ϕH−1). (15)

Upon combining them together, one easily obtains

ϕ̈V0 + αϕ̇V0 + sinϕV0 = γ0 + η(ϕ̈H−1− ϕ̈H0 + α(ϕ̇H−1− ϕ̇H0 ) + sinϕH−1− sinϕH0 )

If we now take the time average of this expression, use equations (11) and (12) and neglect the
contributions of the sines, we find

〈ϕ̇V0 〉 ≈
γ0

α(1 +η)
(16)
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Figure 2. Dynamics of the vertical junctions in local injection regime withγ0 = 2. Clockwise
from the left-hand upper square: ˙ϕV−3, ϕ̇V−2, ϕ̇V−1 and ϕ̇V0 as functions of time (natural units) for
α = 0.1,βL = 1.0 andη = 1.0. Ladder withNj = 11 cells.
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Figure 3. Dynamics of the horizontal junctions in local injection regime withγ0 = 2. Clockwise
from the left-hand upper square: ˙ϕH−4, ϕ̇H−3, ϕ̇H−2 andϕ̇H−1 as functions of time (natural units) for
α = 0.1,βL = 1.0 andη = 1.0. Ladder withNj = 11 cells.

since in the steady state the averages of the accelerations vanish. Upon taking a look at figures 2
and 3, it is seen that this simple relation is fairly well satisfied during the first phase.

Another interesting aspect of our results is noteworthy. The excitation obtained for
γ0 = 2.0 (see figures 2 and 3) appear to be more strongly localized about the 0th vertical
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Figure 4. Dynamics of the vertical junctions in local injection regime withγ0 = 0.7. Clockwise
from the left-hand upper square: ˙ϕV−3, ϕ̇V−2, ϕ̇V−1 and ϕ̇V0 as functions of time (natural units) for
α = 0.1,βL = 1.0 andη = 1.0. Ladder withNj = 11 cells.
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Figure 5. Dynamics of the horizontal junctions in local injection regime withγ0 = 0.7. Clockwise
from the left-hand upper square: ˙ϕH−4, ϕ̇H−3, ϕ̇H−2 andϕ̇H−1 as functions of time (natural units) for
α = 0.1,βL = 1.0 andη = 1.0. Ladder withNj = 11 cells.

junction than that observed after decreasing the driving current toγ0 = 0.7 (see figures 4
and 5). In addition, forγ0 = 2.0 the PD of two adjacent junctions of the same class (vertical
or horizontal) oscillate approximately with opposite phases, whereas forγ0 = 0.7 they vibrate
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Figure 6. Rotobreather dynamics of the vertical junctions. Clockwise from the left-hand upper
square: ˙ϕV−3, ϕ̇V−2, ϕ̇V−1 and ϕ̇V0 as functions of time (natural units) forα = 0.1, βL = 1.0 and
η = 1.0. Ladder withNj = 11 cells uniformly fed withγn = 0.7, n = 0,±1, . . . ,±N .
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Figure 7. Rotobreather dynamics of the horizontal junctions. Clockwise from the left-hand upper
square: ˙ϕH−4, ϕ̇H−3, ϕ̇H−2 and ϕ̇H−1 as functions of time (natural units) forα = 0.1, βL = 1.0 and
η = 1.0. Ladder withNj = 11 cells uniformly fed withγn = 0.7, n = 0,±1, . . . ,±N .

approximately in phase. The origin of these effects is that a rotobreather is characterized by
a localization rate and phase shifts that depend on the driving current through the frequency
of oscillationω of the vibrating PD (notice thatω ≈ 5.0 for γ0 = 2.0 andω ≈ 1.6 for
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Figure 8. Rotobreather profile: amplitudes of the oscillating vertical PD velocities for a ladder
with Nj = 25. The other parameters are as before.
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Figure 9. Rotobreather profile: amplitudes of the oscillating horizontal PD velocities for a ladder
with Nj = 25. The other parameters are as before.

γ0 = 0.7). This point will be clarified in the next section, where we derive analytically both
the localization rate and the phase shifts of our rotobreathers, starting from the ansatz of time
periodicity for the solution of equations (3) and (4).

Finally, figures 8 and 9 show the amplitudes of oscillation of the PD velocities associated
to the vertical and, respectively, horizontal junctions which lie on the left and on the right of
the central rotating junctions, in a ladder withNj = 25 and the same parameters as in figures 6
and 7. As is seen, the amplitudes decay to zero for both types of junctions, showing that the
rotobreather solution of our system is spatially decaying into static fixed points. This is in
contrast to [FM], where the amplitudes, due to the periodic driving, were not decaying to zero
far away from the rotobreather centre.
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4. Analysis of the tails of a rotobreather

In both local and uniform current injection regimes, the presence of a single rotobreather in the
ladder is characterized far from its centre, i.e. along the tails, by vertical and horizontal junctions
whose PD perform vanishing oscillations around the minimum of the potential. This allows us
to develop a general analysis of several properties of the rotobreather, particularly localization
rate and phase shifts, by considering the linearized equations of motion of the system. It is to
be mentioned that a similar approach has been used recently in [UMS], where the dynamics
of bunched fluxon states in a discrete Josephson transmission line were considered. In that
case the analysis of the tails of the kinks travelling along the line, permitted the evaluation
(approximately) of the kink velocities at which the switching between different bunched states
takes place.

The details of our analysis are as follows. By linearizing equations (3) and (4), one finds

ϕ̈Vn + αϕ̇Vn + ϕVn = 0n + βL(2(ϕ
H
n − ϕHn−1) + ϕVn+1 + ϕVn−1− 2ϕVn ) (17)

ϕ̈Hn + αϕ̇Hn + ϕHn =
βL

η
(ϕVn − ϕVn+1− 2ϕHn ) (18)

where

0n =
{

0 local injection regime

γ uniform injection regime

and|n| � 1. If we now defineϕ̂Vn
.= ϕVn − 0n, equations (17) and (18) become

¨̂ϕ
V

n + α ˙̂ϕ
V

n + ϕ̂Vn = βL(2(ϕHn − ϕHn−1) + ϕ̂Vn+1 + ϕ̂Vn−1− 2ϕ̂Vn ) (19)

ϕ̈Hn + αϕ̇Hn + ϕHn =
βL

η
(ϕ̂Vn − ϕ̂Vn+1− 2ϕHn ). (20)

Let us search for the periodic solutions to (19) and (20), for some fixed periodT = 2π/ω.
The periodicity of the solution allows us to expand the componentsϕ̂Vn andϕHn in Fourier series

ϕ̂Vn =
∑
κ

8̂V
κ e3(κ)n+i κωt (21)

ϕHn =
∑
κ

8H
κ e3(κ)n+i κωt (22)

with

3(κ) = R(κ) + i I(κ) (23)

andκ = 0,±1,±2, . . . . By inserting (21) and (22) in (19) and (20) and equating coefficients
corresponding to the sameκ, one obtains the following algebraic equations in the Fourier
amplitudes8̂V

κ and8H
κ(

κ2ω2 + i ακω − 1 + 4 sinh2
3

2

)
8̂V
κ + 2βL(1− e−3)8H

κ = 0 (24)

βL

η
(1− e3)8̂V

κ +

(
κ2ω2 + iακω − 1− 2

βL

η

)
8H
κ = 0. (25)

In order to have nontrivial solutions, the determinant of the latter set of equations must vanish.
That leads to a complex algebraic equation in3, which can be split in a pair of real equations
into the unknowns

x
.= Re

(
sinh2 3

2

)
(26)

y
.= Im

(
sinh2 3

2

)
(27)
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Figure 10. I/π as a function of|κω| for βL = 1.0, η = 1.0 andα = 0.01 (solid), 0.1 (dotted),
0.25 (dashed), 0.5 (long-dashed), 1.0 (dot-dashed).

namely

4βL(κ
2ω2 − 1)x + 4βLακωy + κ4ω4 −

(
2 +α2 +

2βL
η

)
κ2ω2 + 1 +

2βL
η
= 0

4βLακωx − 4βL(κ
2ω2 − 1)y − 2ακ3ω3− 2ακω

(
1 +

βL

η

)
= 0.

As one can easily check, forα = 0 and|κω| = 1 the set cannot determine any solution for
x andy, since all coefficients vanish. This corresponds to the linear plane wave modeω(1)p
(see (9)), which is dispersionless. On the other hand, forα 6= 0 the above set has a unique
solution for any value ofκω, i.e.

x = 1 + 2βL/η − κ2ω2

4βL
(28)

y = ακω

4βL
. (29)

We now wish to invert (28) and (29) and make the dependence ofR andI on |κω| explicit.
We first notice (see appendix for details) that equations (26) and (27) can be manipulated to
get the form

cosh2R cos2 I = (1 + 2x)2 (30)

cosh2R + cos2 I = 1 + 4y2 + (1 + 2x)2. (31)

Then, if we introduce the equation

ξ2 − (1 + 4y2 + (1 + 2x)2)ξ + (1 + 2x)2 = 0 (32)

we find the following solution forR andI
R = arcosh(

√
ξ+) 6 0 (33)

I± = arcos(±
√
ξ−) (34)
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Figure 11. |R| as a function of|κω| for βL = 1.0, η = 1.0 andα = 0.01 (solid), 0.1 (dotted),
0.25 (dashed), 0.5 (long-dashed), 1.0 (dot-dashed).

where

ξ± = 1
2(1 + 4y2 + (1 + 2x)2 ±

√
16y4 + (1− (1 + 2x)2)2 + 8y2(1− (1 + 2x)2)2)

(it is easy to see thatξ+ > 1 andξ− 6 1 for anyx andy).
With the help of the above derived relations it is easy to compute all tail properties. Let us

focus here on one aspect. When considering breathers in Hamiltonian lattices, the imaginary
part of3 is fixed by the wave number of a plane wave with a frequency belonging to the edge
of the band, and e.g. in systems with nearest neighbour interaction this will be eitherq = 0
or q = π , independently ofω. Here however we find thatI becomes a smooth function of
ω, which is due to the dissipative terms in the equations of motion. Thus a given rotobreather
will be characterized not only by a given localization length, but also by a characteristic wave
length in the tails. In figures 10 and 11 we show the dependences ofI andR on κω for
different values ofα. The transition to the Hamiltonian case is nicely observed in figure 10.
The strong variation ofI is observed whenκω is tuned through the position of the plane wave
spectrum (which is defined forα = 0). Remarkably the localization length 1/R is also not
diverging for nonzeroα anymore whenκω belongs to the plane wave spectrum, in contrast
to the Hamiltonian caseα = 0. Thus breathers become even more robust in nonHamiltonian
systems, although the resonances which are deadly in the Hamiltonian case can be still traced
in the dissipative case.

5. Conclusions

In this paper we presented a study of rotobreather solutions in Josephson ladders with
injected dc currents and nonzero island–island capacitances. By that we expect to be close
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Figure 12. Minimal curve |Rmin| as a function of|ω| calculated forκ = 1, . . . ,100.
Parameters:βL = 1.0, η = 1.0 andα = 0.1.

to experimental realizations of these systems. We showed that rotobreathers do exist, and
that the tails of these solutions are characterized both by a localization length and by a
wave length which change simultaneously upon changing the frequency of the solution. We
proposed a simple way to generate these solutions experimentally. Let us finally propose
some experimental observations. If one succeeds in generating a rotobreather experimentally,
one could change the bias. By that one will smoothly change the rotobreather frequency,
and consequently also all its multiplesκω. The first prediction is then that in the tails of the
solution one should observe not only a smooth change of the localization length, but also a
smooth change of the wavelength. Both effects could be detected. Furthermore, whenever a
multiple κω crosses the plane wave spectrum, resonances are expected, i.e. the localization
length should increase (but not diverge) and the wave length should vary much more strongly
(see figures 10 and 11). If one succeeds in varying the current such that several resonances
are covered, the inverse localization lengthR should vary as depicted in figure 12, which is
generated by taking the minimum ofR(κ) for any givenω. These resonance patterns will be
clear fingerprints of the presence of rotobreathers in Josephson ladders. Experiments are on
the way to confirm these predictions.
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Appendix

By virtue of equation (23), we have

sinh
3

2
= sinh

R
2

cos
I
2

+ i cosh
R
2

sin
I
2

(35)
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which gives

sinh2 3

2
= sinh2 R

2
cos2

I
2
− cosh2

R
2

sin2 I
2

+ 2i sinh
R
2

cosh
R
2

sin
I
2

cos
I
2
. (36)

Therefore, by means of the following identities

sinI = 2 sin
I
2

cos
I
2

(37)

sinhR = 2 sinh
R
2

cosh
R
2

(38)

sin2 I
2
= 1− cosI

2
(39)

cos2
I
2
= cosI + 1

2
(40)

sinh2 R
2
= coshR− 1

2
(41)

cosh2
R
2
= coshR + 1

2
(42)

one can write equations (26) and (27) in the form

x = coshR cosI − 1

2
(43)

y = sinhR sinI
2

(44)

By squaring these latter and using the basic relations sin2 I+cos2 I = 1, cosh2R−sinh2R = 1
we finally obtain equations (30) and (31).
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